Search results for "Hes3 signaling axis"

showing 2 items of 2 documents

2015

Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share vari…

Cancer ResearchPathologymedicine.medical_specialtybusiness.industryNotch signaling pathwayEmbryonic stem cellNeural stem cellOncologyNotch proteinsHes3 signaling axisCancer researchMedicineCyclin-dependent kinase 8EGFL7Progenitor cellbusinessFrontiers in Oncology
researchProduct

VEGF and Notch Signaling in Angiogenesis

2015

The vascular system is responsible for providing every cell in vertebrate organisms with a sufficient supply of oxygen and nutrients, allowing waste disposal as well as transmitting immune responses among other functions. Thus, every tissue and organ requires an efficient network of blood vessels, which can be formed de novo (vasculogenesis) or from existing vessels (angiogenesis). The onset of the latter, namely endothelial cell (EC) sprouting, is the focus of this chapter. EC sprouting starts with the differentiation of ECs into guiding tip cells and proliferative stalk cells that form the growing sprout and it ends with the so-called anastomosis, when the sprout fuses with another sprout…

Vascular endothelial growth factorEndothelial stem cellchemistry.chemical_compoundVasculogenesischemistryHes3 signaling axisAngiogenesisNotch signaling pathwayBiologyMural cellCell biologyWaste disposal
researchProduct